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Abstract

We present an analysis which shows that the ranges of space and time scales spanned by a

system are not invariant under the Lorentz transformation. This implies the existence of a frame

of reference which minimizes an aggregate measure of the range of space and time scales. Such a

frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam

interacting with electron clouds. Implications for experimental, theoretical and numerical studies

are discussed. The most immediate relevance is the reduction by orders of magnitude in computer

simulation run times for such systems.
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The study of the interaction of two or more “objects” (in the broad sense of collections

of particles, possibly including massless particles such as photons, or wave packets) crossing

each other at relativistic velocities is common to many areas of science and technology. This

field encompasses all laser-matter interactions and relativistic beams colliding with each

other or interacting with matter. In many instances, the system exhibits a disparity of space

and time scales between the crossing objects which can span several orders of magnitude,

with implications for experimentation, theoretical and numerical analysis. Examples of such

systems with large separations of scales are: free electron lasers [1], laser-plasma acceleration

[2–4], and high-energy particle beams interacting with electron clouds [5].

The disparity of scales sets significant constrains on experiments where a very short

particle and/or laser beam propagates through a structure (plasma, accelerator,...) which

is orders of magnitude longer. The increase in energy of the incident pulse, coupled to a

decrease in the pulse duration, puts increasingly challenging requirements on the precision

of apparatus alignment, time response and synchronism.

For the theoretical study of such systems, it is common practice to perform a change of

variable of the form {x′ = x−vt, t′ = t} or {x′ = x, t′ = t−x/v}, where t is the time, x is the

direction of propagation of the incident beam and v is its speed in the laboratory frame. This

allows the study of just a “window” moving respectively in space/time which encompasses

the “beam” and that portion of the “target” which it is instantaneously overlapping. It is

also recognized that the separation of scales in space and time between the incident beam

and the target offers the opportunity for simplifying the mathematical description of the

interaction through the use of Eikonal (sometimes referred to as “slowly varying envelope”)

approximations. Although the simplification allows recovery of many features of the physical

processes at play, there are instances where the physics that is omitted by these models

cannot be neglected, and numerical solutions on a computer are then required. Because a

wide separation of space and time scales can impose severe limitations on the size of the

system that can be modeled (“multiscale” problems), these usually require massively parallel

computations, and parametric studies of the full system are often impossible without the

use of the above-mentioned approximations.

We will show that the use of the Lorentz transformation {x′ = γ (x − vt) , t′ =

γ (t − vx/c2)} (where c is the speed of light in vacuum and γ = 1/
√

1 − v2/c2 is the usual

relativistic factor) offers the opportunity of bridging disparate space and time scales, the
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benefits of which will be discussed and demonstrated on one example.

We begin by illustrating the effect of scale separation under the Lorentz transformation

on a very simple configuration where we consider two “objects” with parallel velocity vectors

having, in a frame of reference F0: the same (a) length l, (b) minimum length of interest

λ, and (c) maximum frequency of interest ν = 1/τ ; and different speed β+ ≥ 0 and β- ≤ 0

(denoting quantities related to the two objects respectively with the subscripts + and −).

For the sake of simplicity, and for this example only, we assume that the two objects are

sufficiently rigid macroscopically that the total length and average velocities are not affected

during the interaction. Under these assumptions, the total time for the two objects to cross

each other in the frame F0 is given by T = 2l/ (|β+ − β-|c), and the ratios of the longest to

smallest space/time scales are given respectively by Rs = 2l/λ and Rt = T/τ . In a frame

F moving at speed βc in F0, we have (denoting quantities in the moving frame with the

superscript ∗)



















β∗
± = (β± − β) / (1 − ββ±) ,

l∗±/l0 = λ∗
±/λ0 = τ0/τ ∗

± = 1/ [γ (1 − ββ±)] ,

T ∗ =
(

l∗
+

+ l∗-
)

/
[

|β∗
+
− β∗

- |c
]

.

(1)

If we assume that β ≥ 0 then we have λ∗
- ≤ λ∗

+
and τ ∗

+
≤ τ ∗

- , so that the ratios of longest

to smallest space and time scales are given in the moving frame F by







R∗
s =

(

l∗
+

+ l∗-
)

/λ∗
-,

R∗
t = T ∗/τ ∗

+
.

(2)

From (1) and (2), we find that the dependence Γ of space and time scales ratios with regard

to the moving frame is given by

Γ = R∗

s/Rs = R∗

t /Rt =
1 − ββ̄

1 − ββ+

, (3)

with β̄ = (β+ + β-) /2. If we assume β̄ << 1 (velocities of the two objects are almost equal

and opposite in F0), Γ simplifies to Γ ≈ 1/ (1 − ββ+), which is plotted versus γ = 1/
√

1 − β2

on Fig. 1 for several values of γ+ = 1/
√

1 − β2
+
. It varies as 2γ2 for γ < γ+ and asymptotes

to 2γ2
+

for γ > γ+. From this, we conclude that the space and time scales associated with

each beam, which span the same range in F0, separate from each other in a frame F moving
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FIG. 1: Γ as a function of γ for γ+ = {2, 10, 1e2, 1e3, 1e4}.
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FIG. 2: Phase-space diagrams of two identical rigid objects crossing each other as viewed in (a)

the frame of the center of mass, (b) the rest frame of one object (solid line - object 1, dashed line

- object 2, shaded area - overlap of bodies). A regular mesh (dotted lines), with cells resolving the

smallest space and time scales, is overlaid.

at some velocity βc from F0, at the rate γ2 = 1/ (1 − β2). Note that this is general and

applies to both particles and photons (for example, if object 1 is made of photons, we have

β+ = β∗
+

= 1).

Fig.2 shows the space-time diagrams of two objects crossing each other (for this example,

the velocities were such that the relativistic factor γ0 = 2 for each object in F0; but this

choice is unimportant to the argument). The two objects that are represented can be viewed

as entire uniform beams crossing each other or, perhaps more interestingly, as the smallest

space-time unit of interest for each. Assuming that the two objects are identical in F0,

the corresponding space-time diagram, shown in Fig.2(a), is very simple, with geometrical

structures at one scale only. In the rest frame F of one of the beams, the space-time

diagram, shown in Fig.2(b), reveals a more “complex” layout with very disparate space and
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time scales, revealing graphically the separation of scales obtained above via mathematical

analysis. We also remark that the space-time area covering the interaction (usually of most

interest), is given by the overlap of the two objects (shaded areas on Fig.2), which occupies a

maximal fraction of the support of the system in F0, when the disparity of scales is minimal.

Finally, we note that the diagram in Fig.2(b) can be representative of a short particle beam

or laser pulse propagating into a long structure, such as an FEL, a laser-plasma accelerator,

or of a beam interacting with an electron cloud in a particle accelerator, which are considered

below.

These considerations have consequences in the experimental, theoretical and numerical

study of a system. Experimentally, the study of the fundamental mechanisms of the inter-

actions might be greatly simplified if performed in the frame which minimizes the range of

scales. Potential advantages are: (a) the system is more compact spatially, (b) the time of

interaction is shorter, (c) the ratios between largest to smallest space and time scales are

minimized. All of these alleviate the requirements on alignment, time response of diagnos-

tics and synchronism. Theoretically, it is common practice to study particle beams in their

”rest” or ”bucket” frames where the analysis can be greatly simplified [6]. Furthermore,

developments in series (for example) around some spatial, time, frequency or wavelength of

interest might offer different opportunities of approximation, depending on the chosen frame

of analysis, which have different tradeoffs with regards to the study of some aspects of the

mechanisms at play.

The most important immediate application probably lies in the numerical modeling of

such systems. The approximations used theoretically (Eikonal, “slowly varying envelope”,

“quasi-static”) are also used in numerical analysis in order to reduce the requirements on the

number of points in space and time of the discretized system (using Eulerian or Lagrangian

methods). However, these approximations are sometimes inappropriate and the system must

be modeled from first principles, but the range of the space and time scales imposes very

severe limitations. In such cases, it may be very advantageous to perform the calculation in

the frame which minimizes the range of scales. Potential complications include the modeling

of internal boundaries moving at relativistic velocities or the existence of a non-inertial

moving frame (in a case of a beam propagating in a circular accelerator, for example).

However, the dependence of Γ on the square of γ indicates that gains of orders of magnitude

are possible for relative velocities with large γ, offsetting the potential difficulties.
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As a first example, let us consider one pass of a Free Electron Laser configuration [1]

where an electron beam of length l propagates at speed v into a wiggler consisting of N

magnet pairs of periodicity length λw and vector potential Aw, with l << λw. When

crossing the wiggler, the electron beam will emit electromagnetic radiation at the wavelength

λ = λw [(1 + a2
w) / (2γ2)], where aw = eAw/(mc2), and e and m are respectively the charge

and mass of the electron. The time T taken by the driver beam to propagate through the

magnets is given by T ≈ Nλw/v. Finally, the ratios of the longest to smallest space/time

scales are given respectively by Rs = Nλw/λ ∝ γ2 and Rt = T/ (λ/c) = Nλwc/ (λv) ∝ γ2.

Hence both ratios of scales vary as the square of the relativistic factor γ which, for large

values of γ, corresponds to a large separation of space and time scales. If we consider now

the same system in a frame moving at speed v relative to the laboratory frame, and applying

the Lorentz transformation, the quantities become in this frame: λ∗/λ = λw/λ∗
w = γ and

R∗
s = Rs/γ2 ∝ 1. Hence in this frame of reference, the disparity of space and time scales

vanishes. [9]

As a second example, let us now consider a laser-plasma wakefield accelerator (LPWA)

scheme [2–4] where an incident laser pulse of wavelength λ and length l propagates through a

neutral plasma of length Lp and density n0. The highest frequency of interest is ω = 2πc/λ,

while the time of the interaction is given by T = (Lp + l) /c. The ratio of space and time

scales are Rs = (Lp + l) /λ and Rt = T/ (2π/ω) = Rs. In a frame moving at relativistic speed

βc relative to the laboratory frame, we have (note that we make the common assumption that

the backward Raman emission can be neglected. If not, further considerations are needed

that will be addressed elsewhere.): Lp/L∗
p = γ, λ∗/λ = l∗/l = ω/ω∗ = γ (1 + β), so that

T ∗ = (l∗ + L∗) / (c + v), R∗
s =

(

L∗
p + l∗

)

/λ∗ = αRs, and R∗
t = T ∗/ (2π/ω∗) = αRt/ (1 + β),

with α = (1 − β + l/Lp) / (1 + l/Lp). We have α = 1 when β = 0, α ∝ 1/γ2 when γ2 <<

Lp/l, and α = 3/2Lp/l when γ2 = Lp/l. Since typically, Lp >> l, the ratio of length and

space scales can be considerably reduced in the moving frame. [10]

As a last example, let us consider a relativistic particle beam of length l, positively

charged, propagating at speed βbc in a linear periodic section of an accelerator structure of

length L and periodicity λ = L/n, and interacting with electrons emitted by photo-emission

and/or secondary emission at the walls of the vacuum pipe [5]. For very short bunches

l << L, the minimum/maximum space scales are given by the bunch/accelerator section

lengths l and L. The minimum time scale in the laboratory frame is given by the transit
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time τ of an electron across the pipe due to the beam electric field. The maximum time

scale T is given by the time taken by the beam to get across the accelerator section and we

have T = (L + l) / (βbc) where we have assumed that there are no large accelerating fields in

the section. We have then Rs = (L + l) /l and Rt = T/τ . In a frame moving at relativistic

speed βc relative to the laboratory frame, the quantities become l∗ = l/ [γ (1 − ββb)], L/L∗ =

τ ∗/τ = γ, and T ∗ = (L∗ + l∗) / [(β + βb) c], so that






R∗
s = L∗/l∗ = Rs

1+l/L−ββb

1+l/L ,

R∗
t = T ∗/τ ∗ = Rt

βb(1+l/L−ββb)
γ2(1+l/L)(β+βb)(1−ββb)

.
(4)

For ultra-relativistic beams (βb → 1), then Rs → Rt → (1 − β + l/L) / (1 + l/L) which is

the same function α obtained for the LPWA case. The conclusion obtained for the LPWA

case thus hold here.

We illustrate (using the WARP code[8]) the dramatic speedup which can be obtained, in

a numerical simulation of a beam of 1012 protons propagating at γ = 500 (in the laboratory)

into a cylindrical pipe of radius R = 1cm, embedded into an external continuous focusing

azimuthal magnetic field Bθ = 0.15r, where r is the distance to the axis of propagation. After

1km of propagation through vacuum, the beam encounters an initially cold background of

electrons with uniform density, which ramps linearly over 2km from zero to a maximum of

ne = 1015m−3, and then remains constant for 1km before dropping back to zero linearly over

2km. The beam distribution is initially 6-D gaussian with an RMS transverse size σx = σy =

1mm, RMS length σz = 10cm, beta functions βx = βy = 100m and no momentum spread.

The beam is injected such that each slice passing through z=0 has the above-mentioned

characteristics, initial offset xoff = 0.1σx and velocity vy = 0.1vth, where vth is the initial

transverse thermal spread. The average value of the beam radius < r >=<
√

x2 + y2 >, for

a thin slice taken in the middle of the beam, as a function of its position in the laboratory

frame, is given in Fig. 3 (top) for three runs: a) with no electrons, b) with electrons, in

the laboratory frame, and c) with electrons, in a frame moving at γ =
√

512. As the beam

propagates through the background of electrons, the interaction leads to a type of hose

instability (see bottom of Fig. 3) which is characterized by an exponential growth of < r >,

followed by saturation. As expected, the two calculations performed with electrons led to

the same results. However, due to the different ratios of space and time scales, the Courant

condition on the motion of electrons led to very different restrictions on the time steps: in
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FIG. 3: (Color online) (top) average value of the beam radius for a thin slice taken in the middle

of the beam, as a function of its position in the laboratory frame, given for three runs: a) no

electrons, b) with electrons, in the laboratory frame, and c) with electrons, in a frame moving

at γ =
√

512, (bottom) 3-D snapshot of the beam and electrons from run in the moving frame

taken when the head of the beam reaches z=4km in the laboratory frame (beam macro-particles

are rendered as spheres colored according to their position in r(mm); electrons are sampled and

rendered as streamlines in gold color).

the laboratory frame, the calculation required over 5 million time steps and over a week of

clock time, running on eight 2.2GHz Opteron processors; while the calculation in the frame

moving at γ =
√

512 required only approximately 5000 time steps and completed in less

than 30 minutes, using the same computer resources.

In conclusion, we have shown that, for a system which contains a component of matter

and/or light moving at relativistic velocities with regard to another component, there is a

preferred frame of reference which minimizes the ranges of space and time scales, and the

ratio of maximum to minimum space or time scales varies as the square of the relativistic

factor γ associated with the speed of the moving frame. We have also shown that the large

space and time scale separations in several systems of experimental interest vanish in this

preferred frame, and discussed new possibilities offered by this effect for the experimental,

theoretical and numerical study of these configurations. We have demonstrated the effect on
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three examples: free electron laser, laser plasma acceleration, and electron cloud interactions

with high energy beams. Furthermore, we have recovered for each of these examples the

dependence on the square of the relativistic factor γ which was obtained for a simpler

symmetric configuration. We note in particular that the modeling of these systems using

computer simulations can benefit from orders of magnitude reduction in run time when

performed in this preferred frame, and offered an example where a speedup of three orders

of magnitude was obtained.
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